UNIVERSITY OF BASRAH
COLLEGE OF ENGINEERING MECHANICAL ENGINEERING DEPARTMENT

Resultants of system of forces

The most common type of force system occurs when the forces all act in a single plane, say, the $x-y$ plane, as illustrated by the system of three forces $\mathbf{F}_{\mathbf{1}}, \mathbf{F}_{2}$, and $\mathbf{F}_{\mathbf{3}}$ in Fig. 2/13a. We obtain the magnitude and direction of the resultant force \mathbf{R} by forming the force polygon shown in part b of the figure, where the forces are added head-to-tail in any sequence. Thus, for any system of coplanar forces we may write:

(a)

$$
\mathbf{R}=\mathbf{F}_{1}+\mathbf{F}_{2}+\mathbf{F}_{3}+\cdots \cdot \sum \mathrm{F}
$$

$$
R_{x}=\sum F_{x} \quad R_{y}=\sum F_{y} \quad R=\sqrt{\left(\sum F_{x}\right)^{2}+\left(\sum F_{Y}\right)^{2}} \quad \theta=\tan ^{-1} \frac{R_{y}}{R_{x}}=\tan ^{-1} \frac{\sum F_{y}}{\sum F_{x}}
$$

Algebraic Method

(a)

(b)

(c)

(d)

> UNIVERSITY OF BASRAH
> COLLEGE OF ENGINEERING

MECHANICAL ENGINEERING DEPARTMENT

Principle of Moments

This process is summarized in equation form by

$$
\left.\begin{array}{l}
M_{O=}=\mathbf{F} \tag{2/10}\\
M_{O}=\sum \mathbf{M}=\Sigma(F d) \\
R d=M O
\end{array}\right\}
$$

The first two of Eqs. $2 / 10$ reduce a given system of forces to a force-couple system at an arbitrarily chosen but convenient point O. The last equation specifies the distance d from point O to the line of action of \mathbf{R}, and states that the moment of the resultant force about any point O equals the sum of the moments of the original forces of the system about the same point. This extends Varignon's theorem to the case of nonconcurrent force systems; we call this extension the principle of moments.
For a concurrent system of forces where the lines of action of all forces pass through a common point O, the moment sum $S M$ about that point is zero. Thus, the line of action of the resultant $\mathbf{R}=\Sigma \mathbf{F}$, determined by the first of Eqs. $2 / 10$, passes through point O. For a parallel force system, select a coordinate axis in the direction of the forces. If the resultant force \mathbf{R} for a given force system is zero, the resultant of the system need not be zero because the resultant may be a couple. The three forces in Fig. 2/15, for instance, have a zero resultant force but have a resultant clockwise couple $M=F_{3} d$.

SAMPLE PROBLEM $2 / 9$

Determine the resultant of the four forces and one couple which act on the plate shown.

Figure 2/15

Solution: Point O is selected as a convenient reference point for the force-couple system which is to represent the given system.
$\left[R_{x}=\sum F_{x}\right] \quad R_{x}=40+80 \cos 30^{\circ}-60 \cos 45^{\circ}=66.9 \mathrm{~N}$
$\left[R_{y}=\sum F_{y}\right] \quad R_{y}=50+80 \sin 30^{\circ}+60 \sin 45^{\circ}=132.4 \mathrm{~N}$
$\begin{array}{ll}\left.R=\sqrt{\boldsymbol{F}_{x}^{2}+\boldsymbol{F}_{y}^{2}}\right] & R=\sqrt{(66.9)^{2}+(132.4)^{2}} \\ {\left[\theta=\tan ^{-1} \frac{R_{y}}{R_{x}}\right]} & \theta=\tan ^{-1} \frac{132.4}{66.9}=63.2^{\circ}\end{array}$
$\left[M_{o}=\Sigma(F d)\right] \quad M_{o}=140-50(5)+60 \cos 45^{\circ}(4)-60 \sin 45^{\circ}(7)$

